WSEAS TRANSACTIONS on COMPUTERS

lise Leal-Aulenbacher, José M. Suarez-Jurado
Efren R. Coronel-Flores

A Dynamic, Real-Time Alarm System for Power Plants

ILSE LEAL-AULENBACHER

JOSE M. SUAREZ-JURADO

EFREN R. CORONEL-FLORES

Instituto de Investigaciones Eléctricas Instituto de Investigaciones Eléctricas Instituto de Investigaciones Eléctricas

Gestion Integral de Procesos
Reforma 113, 62490 Cuernavaca
MEXICO
ilse.leal @iie.org.mx

Gestién Integral de Procesos
Reforma 113, 62490 Cuernavaca
MEXICO
jmsuarez @iie.org.mx

Gestion Integral de Procesos
Reforma 113, 62490 Cuernavaca
MEXICO
coronel @iie.org.mx

Abstract: Alarm systems have been widely used to help power plant operators identify abnormal conditions that
require their attention. However, there are certain well-known issues with alarm systems that have a negative effect
on their ability to provide useful information to operators. Alarms can become difficult to manage when too many
of them are presented simultaneously. Power plants often perform maintenance tasks or change configurations
periodically. When alarm limits are configured according to ideal operation conditions alone, alarms may become
irrelevant when operation conditions change. In this paper, we present a real-time alarm system, which incor-
porates tactics such as hierarchical organization of alarms and alarm processing, relative to current power plant
operation conditions. We show how these strategies can be used to improve how alarms are presented to power

plant operators.

Key—Words: alarm system, real-time, data acquisition system

1 Introduction

Although alarm systems have been used for a long
time, there are some problems that make managing
alarms difficult and can even become a burden to op-
erators. Alarms are defined as “an audible and/or vis-
ible means of indicating to the operator an equipment
malfunction, process deviation, or abnormal condition
requiring a response” [1]].

A recurrent issue with alarm systems is the num-
ber of alarms presented to operators. Alarms systems
should provide operators with relevant and timely in-
formation to help them identify abnormal operation
conditions. In practice, however, alarms displays can
overflow with irrelevant or redundant alarms.

In this paper, we present a dynamic, real-time
alarm system that implements several strategies that
help organize alarms in relation to structure and di-
vision of responsibilities in power plants. Instead of
configuring a set of alarm limits based on normal op-
eration conditions, our alarm system supports the def-
inition of different sets of alarm limits, which adapt
to different operation conditions. Our system can
be configured to detect current operation mode in a
power plant automatically and adjust alarm limits ac-
cordingly. In this way, we seek to ensure that alarm
limits are verified in relation to current operation con-
ditions.

In addition, our system categorizes alarms in
alarm subsystems, which can be modeled after the

E-ISSN: 2224-2872

620

structure and organization of power plants. There-
fore, alarms are presented to operators based on their
roles and responsibilities. We believe that this mech-
anism helps overcome the problem of overwhelming
operators with too many alarms. Our system was im-
plemented in C++ under Linux and it is in its initial
testing phase.

The remainder of this paper is structured as fol-
lows. In section[2] we describe issues with alarm sys-
tems in general. We present our system design prin-
ciples and architectural drivers in section |3] Section
M) describes our development practices, which are the
result of years of accumulated experience with real—
time, mission—critical systems. In section [5] we de-
scribe our main alarm system features and describe
how they help present alarms more effectively through
the use of alarm subsystems and hierarchical organi-
zation. Section[6] gives a high-level overview of our
system architecture. Finally, we present our conclu-
sions and future work.

2 Issues in Alarm Systems

An alarm system must help operators identify condi-
tions that require their attention. Information must be
presented in a clear and timely manner. When too
much information is presented, it is difficult to use
it to make decisions. Moreover, if alarms being dis-
played are not relevant or useful, operators might end
up ignoring them altogether. We believe it is impor-

Volume 14, 2015

WSEAS TRANSACTIONS on COMPUTERS

tant to keep researching these issues, because most of
the literature that talks about them is not very recent.
Although core issues in alarm systems have been iden-
tified for a long time, they still affect alarm systems
today.

In this section, we discuss these issues to put our
design objectives and system features in context.

2.1 Number of alarms presented to a user

One common problem with alarm systems is that too
many alarms may be presented to an operator during
mode changes or plant transients [2]. Operators need
to analyze each alarm to determine what needs to be
done. Therefore, operators may be able to properly
handle only a limited number of alarms at a given
time. If too many alarms are presented at the same
time, the process of handling alarms may prove time—
consuming. In fact, research suggests that one alarm
in ten minutes (about 150 alarms per day) can be con-
sidered acceptable. Even up to two alarms in ten min-
utes can be manageable. However, anything higher
than that, can hinder an operator’s capacity to prop-
erly manage alarms [3] [4]. It has been shown that
frequent alarms can become a distraction instead of
helping operators, who might even end up disabling
alarm systems [3]].

Our system aims to overcome this issue by cat-
egorizing alarms in subsystems. Since power plants
are complex, usually their management is naturally di-
vided in subsystems. Thus, certain operators focus on
specific areas such as electrical systems, turbines, re-
actors, etc. Our alarm system takes advantage of this
fact and categorizes alarms in subsystems. With this
mechanism, operators can focus on alarms that are re-
lated to their area of responsibility.

Although categorizing is a good starting point to
reduce the number of alarms presented to operators, it
is also necessary to consider that power plant manage-
ment is hierarchical in nature. For example, control
room operators need to be able to monitor the entire
power plant, with all of its subsystems. Hence, our
system organizes subsystems in a configurable, hier-
archical structure. This feature will be described in
more detail in section[5.1]

2.2 Alarms not handled on time

Another important factor in alarm systems is related
to what happens to alarms when they are not acknowl-
edged for a long time.

Alarms can remain unacknowledged for several
reasons: In occasions, certain alarms that were not
configured correctly can be systematically ignored
over time (they become nuisance alarms). In this case,

E-ISSN: 2224-2872

621

lise Leal-Aulenbacher, José M. Suarez-Jurado
Efren R. Coronel-Flores

it is important to identify such alarms and either elimi-
nate them or configure them correctly. Other scenario
could involve human error. Perhaps an operator got
sidetracked while dealing with other alarms, or maybe
an alarm was raised and an operator ignored it think-
ing it was going to be handled by a peer. These sit-
uations should be brought to the attention of a super-
visor. In this way, these situations can be promptly
identified and solved. Our system addresses these is-
sues through a timeout mechanism. This mechanism
is directly related to our hierarchical organization of
alarm subsystems (see section [5.1). Each alarm sub-
system can have a timeout assigned to it. Therefore, if
an alarm is not acknowledged after a certain period of
time, it is moved to the alarm subsystem immediately
above it in the hierarchy. This mechanism is described
in more detail in section[3.2

2.3 Alarms becoming irrelevant

Another issue with alarm systems is that certain
alarms may become irrelevant over time. This hap-
pens since power plant operation is dynamic in na-
ture. Power plants may add or remove equipment, un-
dergo maintenance, change configuration, etc. These
changes happen over time and have a direct impact on
how alarm limits should be configured.

In many cases, alarm limits are configured with
assumptions about ideal operation conditions. How-
ever, operation conditions can change. For example,
nuclear power plants refuel every 18—24 months [6].
This constitutes a different operation mode in which
the reactor is under maintenance (not in operation).
If an alarm system does not take this into account,
reactor-related alarms might be triggered. However,
in that particular situation (a power plant operating
in “refuel mode”), those alarms would not be rele-
vant. Our system addresses this issue by dynami-
cally adjusting to the current power plant operation
mode. This is achieved through the use of Alarm
Plans, which are described in section[5.3]

3 Architectural drivers

To design and implement our alarm system, we started
by identifying our main architectural drivers. Soft-
ware architecture is defined by certain functional,
quality and business requirements. These require-
ments are known as architectural drivers|7]. Con-
flicts among system requirements are common. For
example, a system could require a high level of se-
curity and a high level of modifiability. However,
both requirements will most likely impact each other.
For instance, a highly configurable system might have
more security vulnerabilities. Architectural drivers

Volume 14, 2015

WSEAS TRANSACTIONS on COMPUTERS

help software architects and designers manage con-
flicting requirements from the start by clearly identi-
fying quality attributes that will impact the whole sys-
tem architecture.

Since our system will be integrated to a critical
data acquisition system (known as NDAS), it is impor-
tant to consider our alarm system as a critical system
as well. Critical systems are systems whose failure
can have negative economic, physical or safety con-
sequences on organizations or people. Reliability and
Performance are among the most important architec-
tural drivers for these types of systems|].

To put our architectural drivers in context, we will
give a brief overview of the NDAS in the next section.

3.1 Data Acquisition System

The NDAS was originally developed in order to grad-
ually replace a data acquisition system that ran on a
VAX/VMS platform. It is capable of acquiring thou-
sands of signals that power plant operators and engi-
neers use to monitor the state of a nuclear power plant
and its different processes[9].

Data can be acquired on real time or in historical
mode. Real-time acquisition involves a 1Hz sampling
rate. In contrast, Historical mode acquisition involves
sampling rates that can range from 1 to 250Hz[10]
[LL1]).

This system is critical because it is used 24/7 by
engineers and power plant operators to assess the state
of the plant and to aid in decision—making.

Hence, our alarm system must be able to monitor
and process thousands of data points in real time. In
addition, we consider that it is important for this sys-
tem to be flexible enough to support changes in plant
configuration or structure. Therefore, our main archi-
tectural drivers are reliability, performance and modi-
fiability.

3.2 Reliability

Reliability is our most important architectural driver.
As we mentioned before, our alarm system will be in-
tegrated to a DAS system that operates 24/7 and which
is a mission—critical system. For this reason, our sys-
tem was designed in such a way that it does not in-
terfere with the NDAS in any way. Hence, our alarm
system must function as a separate module with re-
spect to the NDAS.

To achieve this, our alarm system is self—
contained to minimize any dependence with the
NDAS. In this way, our alarm system obtains its in-
puts (thousands of data points in real-time) from the
NSAD in a controlled manner, by using specific rou-
tines that access acquired data in read—only mode.

E-ISSN: 2224-2872

622

lise Leal-Aulenbacher, José M. Suarez-Jurado
Efren R. Coronel-Flores

Therefore, although our alarm system will be an in-
tegral part of the NDAS, we took care to design our
system to minimize coupling. Our alarm system code
is independent from the NDAS core processes. This
also aids to achieve modifiability, as discussed in sec-

tion

3.3 Performance

Performance is another very important architectural
driver in our alarm system. Our alarm system must
be capable of analyzing thousands of data points in
real-time. Performance considerations in our system
are closely related to reliability concerns. In order to
issue alarms correctly, our system must be capable of
accessing the information it needs in the most efficient
way possible. As we mentioned before, our system is
implemented in C++ and Linux. This allowed us to
take advantage of inter—process communication (IPC)
mechanisms and other strategies that we have devel-
oped over the years in our experience designing and
implementing real-time data acquisition systems. We
describe such strategies below.

3.3.1 Use of shared memory areas

Shared memory is the fastest form of inter-process
communication (IPC) available [12]. Our system
databases and data are stored in shared memory areas
to maximize performance. This is a tactic that we have
been using since we were developing the NDAS [10].
Therefore, our system reads data points in real-time
from a read—only shared memory area in the NDAS.

3.3.2 Database access mechanism

Databases and configuration files in both our alarm
system and the NDAS are simple text files that are
copied to shared memory areas. We decided not to
use a database management system (DBMS) for our
databases for several reasons: to avoid dependence
on commercial products (this issue will be covered in
more detail in section[3.4)), to avoid unnecessary over-
head and to be able to easily copy databases to shared
memory areas.

Although our databases have thousands of
records, our real-time shared—memory mechanism
provides excellent access times (in the order of mil-
liseconds).

3.4 Modifiability

Modifiability is a key architectural driver in our de-
sign. Although our alarm system was developed with

Volume 14, 2015

WSEAS TRANSACTIONS on COMPUTERS

the NDAS in mind (see section [3.1), we want to be
able to deploy our alarm system in other power plants.

In addition, one of the most important features in
our system is that it adapts to current operation con-
ditions. To achieve that, our system must be highly
configurable. For that reason, our alarm system can
be configured to adapt to different operation scenarios

(see section[5.3).

Our configuration files are plain text files that are
easy to edit and manage. End users can configure sev-
eral aspects of the system, such as alarm categories
(subsystems) and their hierarchical structure.

Another important consideration to achieve mod-
ifiability was to avoid dependence upon commercial
software. In this way, we maintain control over our
system code, making it easy to adapt or modify as
necessary. This is very important because our systems
must be guaranteed and supported for a minimum of
ten years.

4 Development practices

Since our software will be part of a mission—critical
system, we need to take special considerations with
regards to our development practices. We need our
code to execute as fast as possible for very long peri-
ods of time. To achieve this, we propose the following
guidelines:

o Avoid instantiating complex objects in iterative
code. We create and initialize objects only once.
We seek to reuse objects instead of creating them
every time.

o Avoid using dynamic memory. We prefer to use
static memory in order to improve reliability in
our systems. Although nowadays garbage collec-
tors and memory managers perform quite well in
managing dynamic memory, it is important for
us to maintain total control over how and when
memory is used.

e Avoid using third-party software or libraries.
Integrating third—party software can help speed
up development time and is in general a good
practice. There are third—party libraries that are
open—source and known to be reliable. However,
in our case, it is more important to maintain con-
trol over our software and abide by our current
practices (such as not using dynamic memory,
which most libraries do).

E-ISSN: 2224-2872

623

lise Leal-Aulenbacher, José M. Suarez-Jurado
Efren R. Coronel-Flores

‘ EL

| [=il

Figure 1: An example alarm subsystem hierarchy

S Main Alarm System Features

In this section, we present the features we imple-
mented in our alarm system. These features tackle the
issues described in section

5.1 Alarm Subsystems

We base our alarm subsystems strategy on the premise
that alarms are useful when presented to operators that
actually find them relevant. Our approach is based on
the idea of dividing alarms into alarm subsystems. An
alarm subsystem is basically a category of alarms.

Power plants or any big system for that matter,
can usually be divided into smaller parts or subsys-
tems. For example, in a power plant we can have
a turbine subsystem, a reactor subsystem, an elec-
tric subsystem, etc. Each subsystem is usually under
the responsibility of an operator. Because subsystems
are not isolated, their relationships can be represented
through a hierarchical organization. This organiza-
tion should be carefully modeled after the power plant
structure.

Fig. [I] shows an hypothetical and very simplified
example of how a hierarchical subsystem arrangement
could look like in a nuclear power plant. In this ex-
ample, on the lower level there are two subsystems:
electric (EL) and turbine (TR). These subsystems, are
overseen by an auxiliary operation (AQ) subsystem.
At the same time, the auxiliary operation subsystem is
supervised by the main control room subsystem (CR),
which also oversees the reactor (RE) subsystem. We
will use this example in the next sections to illustrate
how our alarm subsystems work.

In our implementation, when alarms are config-
ured, they are assigned to a specific alarm subsystem.
Ideally, each alarm subsystem should be assigned to
the operator responsible for it in the power plant.

When operators log into our system, they can
manage alarms that are assigned to them. When we
refer to managing alarms, we mean the action an op-
erator takes to acknowledge or reset an alarm. For
instance, if the user responsible for the auxiliary oper-

Volume 14, 2015

WSEAS TRANSACTIONS on COMPUTERS

ation (AOQ) subsystem logs in, he can view and manage
alarms that belong to the auxiliary operation subsys-
tem itself. This is a good first step, but because alarm
subsystems are arranged hierarchically, there are cer-
tain important considerations. If the system is too re-
strictive and limits users to their own subsystems, di-
viding alarms may become impractical. For that rea-
son, we consider that hierarchy should play an impor-
tant role on how alarms are managed and presented.

Looking again at our example in Fig.[I] if an OA
operator logs in, shouldn’t he be able to supervise
EL or TR alarms? At the same time, should an EL
operator be able to see OA alarms? To solve this
issue, we decided to take a flexible approach and thus,
based our alarm management system on the following
principles:

e Operators can view and manage alarms that
belong to their own subsystem. For example, an
EL operator would be able to manage EL alarms.

e Operators can view alarms from a subsystem
in a lower hierarchy level. Operators should
be able to supervise and take actions on alarms
directly under them in the subsystem hierarchy.
For instance, if an OA operator logs in, he can
view and manage both EL and TR alarms.

e Operators can view alarms from a subsystem at a
higher hierarchy level. It is easy to see that oper-
ators should not be able to manage alarms from a
higher hierarchy level, since such alarms are not
under their responsibility. However, operators
may occasionally need to see alarms in a higher
hierarchy level. With this in mind, our system
allows operators to view alarms from the subsys-
tem directly above them in the hierarchy; yet, it
does not allow them to manage such alarms.

With this approach, not all alarms are presented to ev-
ery operator. Rather, alarms are categorized so that
certain alarms are presented to operators who will find
them relevant. By dividing alarms into subsystems,
we can help address the issue of presenting too many
alarms to operators.

5.2 Timeout Mechanism

Another important key principle in our design was to
promote best practices regarding division of respon-
sibility. One way to do so is by implementing mech-
anisms that ensure that alarms are actually managed.
For instance, there may be a case where operators no-
tice an alarm and postpone handling it because they

E-ISSN: 2224-2872

624

lise Leal-Aulenbacher, José M. Suarez-Jurado
Efren R. Coronel-Flores

CR

O A0 1h
RE AO alarm
\ 3h

TR O R
alarm

‘ EL

Figure 2: Example alarm timeout

are busy monitoring other events or are not sure what
to do about it at that time. After a while, operators
may end up forgetting such alarm. In such cases, it
may be useful to bring that alarm to the attention of
the subsystem directly above it in the hierarchy (a su-
pervisor).

To achieve this, we designed a mechanism where
each subsystem has a timeout. This means that if an
alarm is not acknowledged within a certain period of
time, it will be assigned to the subsystem above it in
the hierarchy.

Returning to the example hierarchy shown in Fig.
[} let us suppose that an alarm is raised in the TR
subsystem. Let us also suppose that this subsystem
has a timeout of three hours. If an 7R alarm is not
acknowledged within those three hours, our system
would move the alarm to the AO subsystem. There-
fore, if for some reason an TR operator was unable to
manage the alarm, an operator one level higher in the
hierarchy (in this case, AO) would be able to see it and
manage it. Similarly, let us suppose the AO subsystem
has a timeout of one hour. If the alarm is not acknowl-
edged within one hour, it would be moved to the CR
subsystem. This example is illustrated in Fig.

Timeouts are configurable and assigned in a per—
subsystem basis. This provides greater flexibility, be-
cause the system can adapt to the needs and policies
of each power plant.

5.3 Alarm Plans

For an alarm system to be effective, alarm limits must
be configured properly. Most data acquisition systems
are designed to operate for extended periods of time.
Hence, it is important to recognize that power plant
operation conditions are likely to change at certain
times. Therefore, we consider that it is important for
alarm systems to take this into consideration.

In order to address this issue, we propose the con-
cept of dynamic alarm plans. An alarm plan is a con-
figuration file that specifies a group of data points with
their corresponding alarm limits, among other param-
eters. In our system design, several alarm plans can

Volume 14, 2015

WSEAS TRANSACTIONS on COMPUTERS

be defined, one for each set of operation conditions.
For example, we can define an alarm plan for normal
operation conditions and another one for “‘under main-
tenance” conditions.

Our system supports any number of different
alarm plans. Some plants might find it easier to define
one alarm plan at first. Other plants might require to
define several alarm plans in order to have better alarm
management when certain systems are under mainte-
nance.

These alarm plans can enter or go out of process-
ing dynamically, either manually or automatically.

e Manually. An operator can manually specify
which alarm plan will be used at a given time.
Usually, such operation is limited to the operator
assigned to the subsystem highest in the alarm
subsystem hierarchy.

o Automatically. Alarm plans can be associated
with an arbitrary data point, which we call
“operation—mode data point”. Such data point
is assumed to have several discrete states, which
should indicate the operation conditions of the
plant. For instance, a data point value of zero
could be associated to normal operation and a
value of one to operation under maintenance.
Our design assumes that the process of assign-
ing the correct value to the operation—mode data
point is a black box. This is to ensure that our
system can be easily adapted to different data ac-
quisition systems and power plants.

6 Architecture and Implementation

A high-level view of our system architecture is shown
in Fig.[3] Our system is divided in six modules: Alarm
Configuration, Alarm Plans, Operation Mode, Alarm
Detection and Alarm Operations. As we can observe,
our modules interact with each other through three
shared memory areas: Alarm Configuration, Alarm
Plans and Alarm List.

In the following sections, we describe how our
shared memory areas and modules interact.

6.1 Shared memory areas

Our processes need real-time access to alarm plans
and configuration files. Shared memory is the fastest
form of inter-process communication (IPC) avail-
able [12]]. Therefore, to achieve the level of per-
formance we require, our processes communicate
through shared memory areas.

E-ISSN: 2224-2872

625

lise Leal-Aulenbacher, José M. Suarez-Jurado
Efren R. Coronel-Flores

Alarm
Configuration

H AlarmPlans

Historical
Archive

SMA Alarm
Configuration

Alarm
Operations

Alarm

Detection

Operation
Mode

Figure 3: High—level system architecture view

Our databases are stored as text files on disk and
then copied to shared memory areas. Since informa-
tion in our system databases needs to be read by sev-
eral processes without compromising performance,
the use of shared memory areas is an optimal solution.
In the following sections, we describe the content of
our shared memory areas.

6.1.1 Alarm Plan Shared Memory Areas

During the initialization phase of our alarm system,
alarm plans are loaded to memory. A shared mem-
ory segment is created for each alarm plan database.
One of these alarm plans is accessed every second by
our Alarm Detection Process. The alarm plan that is
read each cycle, is determined by the current power
plant operation mode, which is stored in the alarm list
shared memory area (see figure [4)).

Alarm plans contain a list of data points to be
monitored in real-time to determine if an alarm must
be triggered. The number of alarm plans that must
be configured depends on how many operation modes
were defined in the operation mode database.

6.1.2 Alarm Configuration Shared Memory Area

This shared memory area contains both the Operation
Mode Database and the Subsystems Database. It is
accessed by the Alarm Detection Process to obtain in-
formation about alarm subsystems and their configu-
ration parameters.

The Subsystems Database contains the defini-
tion of a power plant’s subsystems. The number of
subsystems defined in this file depends on the organi-
zation and structure of a power plant. This database is
crucial because it defines subsystems hierarchy, which
impacts how alarms are processed by our system.
It also contains configuration parameters for subsys-
tems, such as timeouts.

The Operation Mode Database is where power
plant operation modes can be configured. As we men-

Volume 14, 2015

WSEAS TRANSACTIONS on COMPUTERS

tioned earlier, the number of operation modes that
need to be configured can vary depending on differ-
ent power plant requirements. Each operation mode
is associated with an alarm plan.

6.1.3 Alarm List Shared Memory Area.

During the execution of our system, Alarm Configura-
tion and Alarm Plans shared memory areas are read—
only. However, the Alarm List shared memory area is
updated every second by the Alarm Detection Process,
which detects and triggers alarms (see Fig. [)).

When an alarm condition is detected, an alarm
record is created. Each alarm record contains a times-
tamp, the name of the alarmed data point, and gen-
eral information about the alarm. When an alarm op-
eration is performed, the corresponding alarm record
is updated to indicate whether an alarm has been ac-
knowledged, reset or if its timeout has expired.

6.2 Main Modules

Our system is divided in well-defined modules, which
are designed to minimize coupling. Each module is
self—contained, making our system easy to test and
maintain. The block diagram in Fig.|3|shows our main
system modules. As we can observe, our modules
interact with each other mainly through reading and
writing data in shared memory areas. In the next sec-
tions, we describe our modules in more detail.

6.2.1 Alarm Configuration

This module validates alarm plans and databases and
loads them into their corresponding shared memory
areas. This module is also in charge of performing ini-
tializations and indexing databases for faster access.

One of the most important validations performed
by this module, is verifying that the alarm subsystems
hierarchical organization is valid. For example, we
verify that alarm subsystems appear only once in the
hierarchy or that they do not have more than one par-
ent node.

6.2.2 Operation Mode

Determines the power plant operational mode. If a
data point is associated with the operational mode
(operation—-mode data point, which was described in
section [5.3)), it constantly monitors its value. It also
handles requests for manual operation mode changes.
This module is very important because its function-
ality enables dynamic alarm processing. Depending
on the current operation mode, this module switches

E-ISSN: 2224-2872

626

lise Leal-Aulenbacher, José M. Suarez-Jurado
Efren R. Coronel-Flores

DAS

SMA with data
point values in

real-time

read operation-mode
data point

Alarm system

L TSMA TN
AlarmList

update |

OperationMode

detected

operation
mode

Read
corresponding
alarm limits

read

AlarmDetection

‘ update

list of
alarms
1.n

N

Figure 4: Alarm detection process

to the correct alarm plan, which becomes the active
alarm plan.

6.2.3 Alarm Detection

This module implements our Main Alarm Detection
Process. It is in charge of analyzing data points to
determine whether to trigger alarms. It works in con-
junction with the Alarm List shared memory, where
it updates alarm information in real-time. Alarm
Detection constantly reads the Alarm Plan shared
memory, which contains alarm limits. As mentioned
in section Alarm Detection accesses the active
alarm plan, based on the power plant operation mode
detected by Operation Mode. Besides checking alarm
limits, Alarm Detection analyzes other aspects such
as:

Timeouts. For every alarm, it checks if its timeout
has expired. Timeouts are determined by the time
limit in seconds configured for each alarm subsystem

(see section[5.2).

Deadband analysis. Deadbands are parameters
that adjust alarm limits in analogic data points.
They are used to prevent data points from entering
or exiting a state of alarm because of small varia-
tions. When data points reach a value that exceeds
an alarm limit, the surpassed limit is adjusted in
opposite direction. For example, let us suppose
that an analogic data point has a deadband of 0.5
and an alarm range of 5 to 10. If the data point
has a value larger than 6, it would enter a state of
alarm. Since the lower bound limit was exceeded,
it would be adjusted to 5.0-0.5=4.5. In this way, for

Volume 14, 2015

WSEAS TRANSACTIONS on COMPUTERS

this data point to exit the alarm state, it would need
to have a value lower than 4.5. Once an alarm has
been reset, the affected limit will return to its original
value. Deadbands are configured in a per—alarm basis.

Time filtering. Time filters are used to avoid
triggering too many alarms in a short period. A time
filter can be specified for each alarm and indicates the
number of seconds that must elapse, before an alarm
is triggered.

Grouping. Alarms are grouped in real-time as
they are processed. Currently, we group alarms based
on time periods. For example, we can choose to
group alarms triggered in the last 10 minutes. This
can be useful for root—cause analysis.

Chronological ordering. In memory, alarms
are indexed in relation to the active alarm plan.
Therefore, when a process needs to obtain informa-
tion about a certain alarm, it can access it directly,
without having to search. However, most graphic
displays require showing alarms in chronological
order. Therefore, when a new alarm is raised, it is
inserted into a double linked list, which maintains
alarms organized in chronological order.

6.2.4 Historical Archive

When alarms are reset, they are deleted from the alarm
list since the condition that triggered them in the first
place, no longer applies. However, in many cases, it
is necessary to review historical data to identify cer-
tain patterns. For example, it can be useful to identify
alarms that are triggered too often or at a particular
time of the day.

Our system maintains a historical archive, which
records the following events: triggered alarms, re-
set and acknowledged alarms, changes in power plant
operation mode and alarms that exceed their time-
out. This archive is circular, which means that once
it reaches its maximum allowed size, it is overwrit-
ten from the beginning. This file is generated in CSV
format, so that it can be easily analyzed in any spread-
sheet program.

6.2.5 Alarm Operations

This module manages operations performed on
alarms. For instance, when users acknowledge an
alarm, this module validates the operation and ac-
cesses the Alarm List shared memory area to update
the corresponding alarm status. This module receives
and handles alarm operations by communicating with
our system’s graphic user interface (GUI).

E-ISSN: 2224-2872

627

lise Leal-Aulenbacher, José M. Suarez-Jurado
Efren R. Coronel-Flores

7 Conclusion

In this paper, we described our implementation of
a real-time alarm system that incorporates different
strategies to present alarms in a more efficient way.
Strategies such as dividing alarms in categories and
establishing an alarm subsystem hierarchy can help
tackle problems such as presenting operators with too
much information.

One of the main advantages of our alarm system
is its flexibility. Our system allows alarms to be con-
figured and organized according to the structure of any
power plant. However, configuring an alarm subsys-
tem hierarchy can be complex. In the future, we in-
tend to research ways to facilitate the process of alarm
configuration.

Our architecture was designed so that our alarm
system can be adapted to different power plant con-
figurations.

We have measured the performance of our alarm
system and we have obtained good results. We have
tested our process CPU usage under different scenar-
ios, by simulating events that trigger a large number of
alarms. Even under a high workload (approximately
8000 alarms), our system uses less than 1% of CPU.

Regarding reliability, our alarm system has been
integrated to a data acquisition system with optimal
results. Our alarm subsystem has been running along-
side a DAS for extended periods of time (more than
one month) and both systems have remained stable.

It is important to mention that our system is in its
initial phase of testing. We intend to perform further
analysis once our system is operating with live data in
a power plant.

8 Future work

We would like to evaluate how our alarm processing
strategies impact how operators manage alarms by ob-
taining further feedback from power plant operators.

Acknowledgements: The authors would like to ac-
knowledge (in alphabetical order) Brito—Ferndndez L.
Michel, Del Toro—Cortés A. Laura and Télis—Pérez
Carlos, who participated in the development of the
alarm system presented in this paper.

References:

[1] “ANSI/ISA-18.2-2009 Management of Alarm
Systems for the Process Industries,” 2009.

[2] “Advanced control room alarm system: Require-
ments and implementation guidance,” EPRI,
Technical Report, 2005.

Volume 14, 2015

[3]

[4]

[7]

[10]

[11]

[12]

WSEAS TRANSACTIONS on COMPUTERS

B. H. Wayne Crawford, ‘“Better management
of plant alarms,” Energy-Tech Magazine, May
2010.

A. Hand, “How to build a better operator,” Con-
trol Design, April 2012.

M. Cvach, “Monitor alarm fatigue: an inte-
grative review,” Biomedical Instrumentation &
Technology, vol. 46, no. 4, pp. 268-277, 2012.

“Costs: Fuel, operation, waste disposal
& life cycle,” Nuclear Energy Institute,
Technical Report, 2014. [Online]. Avail-
able: |http://www.nei.org/Knowledge--Center/
Nuclear--Statistics/Costs--Fuel,--Operation,
--Waste--Disposal--Life--Cycle

L. Bass, P. Clements, and R. Kazman, Software
Architecture in Practice. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc.,
1998.

I. Sommerville and G. Kotonya, Requirements
Engineering: Processes and Techniques. New
York, NY, USA: John Wiley & Sons, Inc., 1998.

R. Montellano-Garcia, I. Leal-Aulenbacher, and
H. M. Bernal, “A gradual data acquisition re-
placement strategy for the laguna verde nu-
clear power plant,” in Proceedings of the
9th WSEAS International Conference on Data
Networks, Communications, Computers, Ser.
DNCOCO’10. Stevens Point, Wisconsin, USA:
World Scientific and Engineering Academy and
Society (WSEAS), 2010, pp. 41-46.

I. L. Aulenbacher, J. M. S. Jurado, and E. R. C.
Flores, “A real-time data acquisition system for
the Laguna Verde nuclear power plant,” W.
Trans. on Comp., vol. 9, no. 7, pp. 778-787, July
2010.

I. L. Aulenbacher and J. M. S. Jurado, “A data
acquisition system for the laguna verde nuclear
power plant,” in Proceedings of the 8th WSEAS
international conference on Data networks,
communications, computers, ser. DNCOCO’09.
Stevens Point, Wisconsin, USA: World Sci-
entific and Engineering Academy and Society
(WSEAS), 2009, pp. 142-146.

W. Stevens, UNIX Network Programming: In-

terprocess Communications, 2nd ed. Prentice
Hall, 1999, vol. 2.

E-ISSN: 2224-2872

628

lise Leal-Aulenbacher, José M. Suarez-Jurado
Efren R. Coronel-Flores

Volume 14, 2015

http://www.nei.org/Knowledge--Center/Nuclear--Statistics/Costs--Fuel,--Operation,--Waste--Disposal--Life--Cycle
http://www.nei.org/Knowledge--Center/Nuclear--Statistics/Costs--Fuel,--Operation,--Waste--Disposal--Life--Cycle
http://www.nei.org/Knowledge--Center/Nuclear--Statistics/Costs--Fuel,--Operation,--Waste--Disposal--Life--Cycle

